
17

Chapter

2
 2 ITERATIVE, EVOLUTIONARY, AND

AGILE

You should use iterative development only on
projects that you want to succeed.

—Martin Fowler

Introduction

Iterative development lies at the heart of how OOA/D is best practiced and is
presented in this book. Agile practices such as Agile Modeling are key to apply-
ing the UML in an effective way. This chapter introduces these subjects, and the
Unified Process as a relatively popular sample iterative method.

Objectives
! Provide motivation for the content and order of the book.

! Define an iterative and agile process.

! Define fundamental concepts in the Unified Process.

OOA/D

Introduction

What’s Next?

Iterative,

Evolutionary

& Agile

Having introduced OOA/D, this chapter explores iterative development. The

next introduces the case studies that are evolved throughout the book,

across three iterations.

Inception
Case

Studies

UML and Patterns.book Page 17 Thursday, September 16, 2004 9:48 PM

2 – ITERATIVE, EVOLUTIONARY, AND AGILE

18

Iterative and evolutionary development—contrasted with a sequential or
“waterfall” lifecycle—involves early programming and testing of a partial sys-
tem, in repeating cycles. It also normally assumes development starts before all
the requirements are defined in detail; feedback is used to clarify and improve
the evolving specifications.

We rely on short quick development steps, feedback, and adaptation to clarify
the requirements and design. To contrast, waterfall values promoted big up-
front speculative requirements and design steps before programming. Consis-
tently, success/failure studies show that the waterfall is strongly associated with
the highest failure rates for software projects and was historically promoted due
to belief or hearsay rather than statistically significant evidence. Research dem-
onstrates that iterative methods are associated with higher success and produc-
tivity rates, and lower defect levels.

2.1 What is the UP? Are Other Methods Complementary?

A software development process describes an approach to building, deploy-
ing, and possibly maintaining software. The Unified Process [JBR99] has
emerged as a popular iterative software development process for building object-
oriented systems. In particular, the Rational Unified Process or RUP
[Kruchten00], a detailed refinement of the Unified Process, has been widely
adopted.

Because the Unified Process (UP) is a relatively popular iterative process for
projects using OOA/D, and because some process must be used to introduce the
subject, the UP shapes the book’s structure. Also, since the UP is common and
promotes widely recognized best practices, it’s useful for industry professionals
to know it, and students entering the workforce to be aware of it.

test-driven develop-
ment and refactor-
ing p. 385

The UP is very flexible and open, and encourages including skillful practices
from other iterative methods, such as from Extreme Programming (XP),
Scrum, and so forth. For example, XP’s test-driven development, refactor-
ing and continuous integration practices can fit within a UP project. So can
Scrum’s common project room (“war room”) and daily Scrum meeting practice.
Introducing the UP is not meant to downplay the value of these other methods—
quite the opposite. In my consulting work, I encourage clients to understand and
adopt a blend of useful techniques from several methods, rather than a dogmatic
“my method is better than your method” mentality.

The UP combines commonly accepted best practices, such as an iterative lifecy-
cle and risk-driven development, into a cohesive and well-documented process
description.

To summarize, this chapter includes an introduction to the UP for three reasons:

1. The UP is an iterative process. Iterative development influences how this

UML and Patterns.book Page 18 Thursday, September 16, 2004 9:48 PM

19

WHAT IS ITERATIVE AND EVOLUTIONARY DEVELOPMENT?

book introduces OOA/D, and how it is best practiced.

2. UP practices provide an example structure for how to do—and thus how to
explain—OOA/D. That structure shapes the book structure.

3. The UP is flexible, and can be applied in a lightweight and agile approach
that includes practices from other agile methods (such as XP or Scrum)—
more on this later.

What If I Don’t Care About the UP?

The UP is used as an example process within which to explore iterative and evo-
lutionary requirements analysis and OOA/D, since it’s necessary to introduce
the subject in the context of some process.

But the central ideas of this book—how to think and design with objects, apply
UML, use design patterns, agile modeling, evolutionary requirements analysis,
writing use cases, and so forth—are independent of any particular process, and
apply to many modern iterative, evolutionary, and agile methods, such as
Scrum, Lean Development, DSDM, Feature-Driven Development, Adaptive
Software Development, and more.

2.2 What is Iterative and Evolutionary Development?

A key practice in both the UP and most other modern methods is iterative
development. In this lifecycle approach, development is organized into a series
of short, fixed-length (for example, three-week) mini-projects called iterations;
the outcome of each is a tested, integrated, and executable partial system. Each
iteration includes its own requirements analysis, design, implementation, and
testing activities.

The iterative lifecycle is based on the successive enlargement and refinement of
a system through multiple iterations, with cyclic feedback and adaptation as
core drivers to converge upon a suitable system. The system grows incremen-
tally over time, iteration by iteration, and thus this approach is also known as
iterative and incremental development (see Figure 2.1). Because feedback
and adaptation evolve the specifications and design, it is also known as itera-
tive and evolutionary development.

Early iterative process ideas were known as spiral development and evolution-
ary development [Boehm88, Gilb88].

This book presents an introduction to an agile approach to the UP, but not
complete coverage. It emphasizes common ideas and artifacts related to an
introduction to OOA/D and requirements analysis.

UML and Patterns.book Page 19 Thursday, September 16, 2004 9:48 PM

2 – ITERATIVE, EVOLUTIONARY, AND AGILE

20

Figure 2.1 Iterative and evolutionary development.

Notice in this example that there is neither a rush to code, nor a long drawn-out
design step that attempts to perfect all details of the design before program-
ming. A “little” forethought regarding the design with visual modeling using
rough and fast UML drawings is done; perhaps a half or full day by developers
doing design work UML sketching in pairs at whiteboards.

The result of each iteration is an executable but incomplete system; it is not
ready to deliver into production. The system may not be eligible for production
deployment until after many iterations; for example, 10 or 15 iterations.

Requirements

Design

Implementation &

Test & Integration

& More Design

Final Integration

& System Test

Requirements

Design

3 weeks (for example)

The system grows

incrementally.

Feedback from

iteration N leads to

refinement and

adaptation of the

requirements and

design in iteration

N+1.

Iterations are fixed in

length, or timeboxed.

Time

Implementation &

Test & Integration

& More Design

Final Integration

& System Test

Example

As an example (not a recipe), in a three-week iteration early in the project,
perhaps one hour Monday morning is spent in a kickoff meeting with the
team clarifying the tasks and goals of the iteration. Meanwhile, one person
reverse-engineers the last iteration’s code into UML diagrams (via a CASE
tool), and prints and displays noteworthy diagrams. The team spends the
remainder of Monday at whiteboards, working in pairs while agile modeling,
sketching rough UML diagrams captured on digital cameras, and writing
some pseudocode and design notes. The remaining days are spent on imple-
mentation, testing (unit, acceptance, usability, …), further design, integra-
tion, and daily builds of the partial system. Other activities include
demonstrations and evaluations with stakeholders, and planning for the
next iteration.

UML and Patterns.book Page 20 Thursday, September 16, 2004 9:48 PM

21

WHAT IS ITERATIVE AND EVOLUTIONARY DEVELOPMENT?

The output of an iteration is not an experimental or throw-away prototype, and
iterative development is not prototyping. Rather, the output is a production-
grade subset of the final system.

How to Handle Change on an Iterative Project?

The subtitle of one book that discusses iterative development is Embrace
Change [Beck00]. This phrase is evocative of a key attitude of iterative develop-
ment: Rather than fighting the inevitable change that occurs in software devel-
opment by trying (unsuccessfully) to fully and correctly specify, freeze, and “sign
off” on a frozen requirement set and design before implementation (in a “water-
fall” process), iterative and evolutionary development is based on an attitude of
embracing change and adaptation as unavoidable and indeed essential drivers.

This is not to say that iterative development and the UP encourage an uncon-
trolled and reactive “feature creep”-driven process. Subsequent chapters explore
how the UP balances the need—on the one hand—to agree upon and stabilize a
set of requirements, with—on the other hand—the reality of changing require-
ments, as stakeholders clarify their vision or the marketplace changes.

Each iteration involves choosing a small subset of the requirements, and quickly
designing, implementing, and testing. In early iterations the choice of require-
ments and design may not be exactly what is ultimately desired. But the act of
swiftly taking a small step, before all requirements are finalized, or the entire
design is speculatively defined, leads to rapid feedback—feedback from the
users, developers, and tests (such as load and usability tests).

And this early feedback is worth its weight in gold; rather than speculating on
the complete, correct requirements or design, the team mines the feedback from
realistic building and testing something for crucial practical insight and an
opportunity to modify or adapt understanding of the requirements or design.
End-users have a chance to quickly see a partial system and say, “Yes, that’s
what I asked for, but now that I try it, what I really want is something slightly
different.”1 This “yes…but” process is not a sign of failure; rather, early and fre-
quent structured cycles of “yes…buts” are a skillful way to make progress and
discover what is of real value to the stakeholders. Yet this is not an endorsement
of chaotic and reactive development in which developers continually change
direction—a middle way is possible.

In addition to requirements clarification, activities such as load testing will
prove if the partial design and implementation are on the right path, or if in the
next iteration, a change in the core architecture is required. Better to resolve
and prove the risky and critical design decisions early rather than late—and
iterative development provides the mechanism for this.

Consequently, work proceeds through a series of structured build-feedback-
adapt cycles. Not surprisingly, in early iterations the deviation from the “true

1. Or more likely, “You didn’t understand what I wanted!”

UML and Patterns.book Page 21 Thursday, September 16, 2004 9:48 PM

2 – ITERATIVE, EVOLUTIONARY, AND AGILE

22

path” of the system (in terms of its final requirements and design) will be larger
than in later iterations. Over time, the system converges towards this path, as
illustrated in Figure 2.2.

Figure 2.2 Iterative feedback and evolution leads towards the desired system.
The requirements and design instability lowers over time.

Are There Benefits to Iterative Development?

Yes. Benefits include:

" less project failure, better productivity, and lower defect rates; shown by
research into iterative and evolutionary methods

" early rather than late mitigation of high risks (technical, requirements,
objectives, usability, and so forth)

" early visible progress

" early feedback, user engagement, and adaptation, leading to a refined sys-
tem that more closely meets the real needs of the stakeholders

" managed complexity; the team is not overwhelmed by “analysis paralysis” or
very long and complex steps

" the learning within an iteration can be methodically used to improve the
development process itself, iteration by iteration

How Long Should an Iteration Be? What is Iteration Timeboxing?

Most iterative methods recommend an iteration length between two and six
weeks. Small steps, rapid feedback, and adaptation are central ideas in iterative
development; long iterations subvert the core motivation for iterative develop-
ment and increase project risk. In only one week it is often difficult to complete

Early iterations are farther from the "true
path" of the system. Via feedback and
adaptation, the system converges towards
the most appropriate requirements and
design.

In late iterations, a significant change in
requirements is rare, but can occur. Such
late changes may give an organization a
competitive business advantage.

one iteration of design,
implement, integrate, and test

UML and Patterns.book Page 22 Thursday, September 16, 2004 9:48 PM

23

WHAT ABOUT THE WATERFALL LIFECYCLE?

sufficient work to get meaningful throughput and feedback; more than six
weeks, and the complexity becomes rather overwhelming, and feedback is
delayed. A very long timeboxed iteration misses the point of iterative develop-
ment. Short is good.

A key idea is that iterations are timeboxed, or fixed in length. For example, if
the next iteration is chosen to be three weeks long, then the partial system must
be integrated, tested, and stabilized by the scheduled date—date slippage is ille-
gal. If it seems that it will be difficult to meet the deadline, the recommended
response is to de-scope—remove tasks or requirements from the iteration, and
include them in a future iteration, rather than slip the completion date.

2.3 What About the Waterfall Lifecycle?

In a waterfall (or sequential) lifecycle process there is an attempt to define (in
detail) all or most of the requirements before programming. And often, to create
a thorough design (or set of models) before programming. Likewise, an attempt
to define a “reliable” plan or schedule near the start—not that it will be.

feature use
research p. 56

Research (collected from many sources and summarized in [Larman03] and
[LB03]) now shows conclusively that the 1960s and 1970s-era advice to apply
the waterfall was—ironically—a poor practice for most software projects, rather
than a skillful approach. It is strongly associated with high rates of failure,
lower productivity, and higher defect rates (than iterative projects). On average,
45% of the features in waterfall requirements are never used, and early water-
fall schedules and estimates vary up to 400% from the final actuals.

In hindsight, we now know that waterfall advice was based on speculation and
hearsay, rather than evidence-based practices. In contrast, iterative and evolu-
tionary practices are backed by evidence—studies show they are less failure
prone, and associated with better productivity and defect rates.

Guideline: Don’t Let Waterfall Thinking Invade an Iterative or UP Project

I need to emphasize that “waterfall thinking” often incorrectly still invades a so-
called iterative or UP project. Ideas such as “let’s write all the use cases before
starting to program” or “let’s do many detailed OO models in UML before start-
ing to program” are examples of unhealthy waterfall thinking incorrectly super-

Warning: Superimposing Waterfall on Iterative

If you find yourself on an “iterative” project where most of the requirements
are written before development begins, or there is an attempt to create many
thorough and detailed specifications or UML models and designs before pro-
gramming, know that waterfall thinking has unfortunately afflicted the
project. It is not a healthy iterative or UP project, regardless of claims.

UML and Patterns.book Page 23 Thursday, September 16, 2004 9:48 PM

2 – ITERATIVE, EVOLUTIONARY, AND AGILE

24

imposed on the UP. The creators of the UP cite this misunderstanding—big up-
front analysis and modeling—as a key reason for its failed adoption [KL01].

Why is the Waterfall so Failure-Prone?

There isn’t one simple answer to why the waterfall is so failure-prone, but it is
strongly related to a key false assumption underlying many failed software
projects—that the specifications are predictable and stable and can be correctly
defined at the start, with low change rates. This turns out to be far from accu-
rate—and a costly misunderstanding. A study by Boehm and Papaccio showed
that a typical software project experienced a 25% change in requirements
[BP88]. And this trend was corroborated in another major study of thousands of
software projects, with change rates that go even higher—35% to 50% for large
projects—as illustrated in Figure 2.3 [Jones97].

These are extremely high change rates. What this data shows—as any experi-
enced developer or manager is painfully aware—is that software development is
(on average) a domain of high change and instability—also known as the
domain of new product development. Software is not usually a domain of
predictable or mass manufacturing—low-change areas where it is possible and
efficient to define all the stable specifications and reliable plans near the start.

Figure 2.3 Percentage of change on software projects of varying sizes.

Thus, any analysis, modeling, development, or management practice based on
the assumption that things are long-term stable (i.e., the waterfall) is funda-
mentally flawed. Change is the constant on software projects. Iterative and evo-
lutionary methods assume and embrace change and adaptation of partial and
evolving specifications, models, and plans based on feedback.

0

5

10

15

20

25

30

35

10 100 1000 10000
Project Size in Function Points

R
eq

ui
re

m
en

ts
 c

ha
ng

e

UML and Patterns.book Page 24 Thursday, September 16, 2004 9:48 PM

25

HOW TO DO ITERATIVE AND EVOLUTIONARY ANALYSIS AND DESIGN?

The Need for Feedback and Adaptation

In complex, changing systems (such as most software projects) feedback and
adaptation are key ingredients for success.

" Feedback from early development, programmers trying to read specifica-
tions, and client demos to refine the requirements.

" Feedback from tests and developers to refine the design or models.

" Feedback from the progress of the team tackling early features to refine the
schedule and estimates.

" Feedback from the client and marketplace to re-prioritize the features to
tackle in the next iteration.

2.4 How to do Iterative and Evolutionary Analysis and Design?

This introduction may have given the impression that there is no value in anal-
ysis and design before programming, but that is a misunderstanding as extreme
as thinking that “complete” up-front analysis is skillful. There is a middle way.
Here’s a short example (not a recipe) of how it can work on a well-run UP
project. This assumes there will ultimately be 20 iterations on the project before
delivery:

1. Before iteration-1, hold the first timeboxed requirements workshop, such as
exactly two days. Business and development people (including the chief
architect) are present.

On the morning of day one, do high-level requirements analysis,
such as identifying just the names of the use cases and features,
and key non-functional requirements. The analysis will not be per-
fect.

Ask the chief architect and business people to pick 10% from this
high-level list (such as 10% of the 30 use case names) that have a
blending of these three qualities: 1) architecturally significant (if
implemented, we are forced to design, build, and test the core
architecture), 2) high business value (features business really
cares about), and 3) high risk (such as “be able to handle 500 con-
current transactions”). Perhaps three use cases are thus identi-
fied: UC2, UC11, UC14.

For the remaining 1.5 days, do intensive detailed analysis of the
functional and non-functional requirements for these three use
cases. When finished, 10% are deeply analyzed, and 90% are only
high-level.

2. Before iteration-1, hold an iteration planning meeting in which a subset
from UC2, UC11, and UC14 are chosen to design, build, and test within a
specified time (for example, four-week timeboxed iteration). Note that not

UML and Patterns.book Page 25 Thursday, September 16, 2004 9:48 PM

2 – ITERATIVE, EVOLUTIONARY, AND AGILE

26

all of these three use cases can be built in iteration-1, as they will contain
too much work. After choosing the specific subset goals, break them down
into a set of more detailed iteration tasks, with help from the development
team.

3. Do iteration-1 over three or four weeks (pick the timebox, and stick to it).

On the first two days, developers and others do modeling and
design work in pairs, sketching UML-ish diagrams at many white-
boards (along with sketching other kinds of models) in a common
war room, coached and guided by the chief architect.

Then the developers take off their “modeling hats” and put on
their “programming hats.” They start programming, testing, and
integrating their work continuously over the remaining weeks,
using the modeling sketches as a starting point of inspiration,
knowing that the models are partial and often vague.

Much testing occurs: unit, acceptance, load, usability, and so forth.

One week before the end, ask the team if the original iteration
goals can be met; if not, de-scope the iteration, putting secondary
goals back on the “to do” list.

On Tuesday of the last week there’s a code freeze; all code must be
checked in, integrated, and tested to create the iteration baseline.

On Wednesday morning, demo the partial system to external
stakeholders, to show early visible progress. Feedback is
requested.

4. Do the second requirements workshop near the end of iteration-1, such as
on the last Wednesday and Thursday. Review and refine all the material
from the last workshop. Then pick another 10% or 15% of the use cases that
are architecturally significant and of high business value, and analyze them
in detail for one or two days. When finished, perhaps 25% of the use cases
and non-functional requirements will be written in detail. They won’t be
perfect.

5. On Friday morning, hold another iteration planning meeting for the next
iteration.

6. Do iteration-2; similar steps.

7. Repeat, for four iterations and five requirements workshops, so that at the
end of iteration-4, perhaps 80% or 90% of the requirements have been writ-
ten in detail, but only 10% of the system has been implemented.

Note that this large, detailed set of requirements is based on feed-
back and evolution, and is thus of much higher quality than purely
speculative waterfall specifications.

8. We are perhaps only 20% into the duration of the overall project. In UP
terms, this is the end of the elaboration phase. At this point, estimate in

UML and Patterns.book Page 26 Thursday, September 16, 2004 9:48 PM

27

WHAT IS RISK-DRIVEN AND CLIENT-DRIVEN ITERATIVE PLANNING?

detail the effort and time for the refined, high-quality requirements.
Because of the significant realistic investigation, feedback, and early pro-
gramming and testing, the estimates of what can be done and how long it
will take are much more reliable.

9. After this point, requirements workshops are unlikely; the requirements are
stabilized—though never completely frozen. Continue in a series of three-
week iterations, choosing the next step of work adaptively in each iteration
planning meeting on the final Friday, re-asking the question each iteration,
“Given what we know today, what are the most critical technical and busi-
ness features we should do in the next three weeks?”

Figure 2.5 illustrates the approach for a 20-iteration project.

In this way, after a few iterations of early exploratory development, there comes
a point when the team can more reliably answer “what, how much, when.”

2.5 What is Risk-Driven and Client-Driven Iterative Planning?

The UP (and most new methods) encourage a combination of risk-driven and
client-driven iterative planning. This means that the goals of the early itera-
tions are chosen to 1) identify and drive down the highest risks, and 2) build vis-
ible features that the client cares most about.

Risk-driven iterative development includes more specifically the practice of
architecture-centric iterative development, meaning that early iterations
focus on building, testing, and stabilizing the core architecture. Why? Because
not having a solid architecture is a common high risk.

2.6 What are Agile Methods and Attitudes?

Agile development methods usually apply timeboxed iterative and evolution-
ary development, employ adaptive planning, promote incremental delivery, and
include other values and practices that encourage agility—rapid and flexible
response to change.

Book Iterations vs. Real Project Iterations

Iteration-1 of the case studies in this book is driven by learning goals rather
than true project goals. Therefore, iteration-1 is not architecture-centric or
risk-driven. On a real project, we would tackle difficult and risky things first.
But in the context of a book helping people learn fundamental OOA/D and
UML, that’s impractical—we need to start with problems illustrating basic
principles, not the most difficult topics and problems.

UML and Patterns.book Page 27 Thursday, September 16, 2004 9:48 PM

2 – ITERATIVE, EVOLUTIONARY, AND AGILE

28

Figure 2.4 Evolutionary analysis and design—the majority in early iterations.

It is not possible to exactly define agile methods, as specific practices vary
widely. However, short timeboxed iterations with evolutionary refinement of
plans, requirements, and design is a basic practice the methods share. In addi-
tion, they promote practices and principles that reflect an agile sensibility of
simplicity, lightness, communication, self-organizing teams, and more.

Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5

20%

2%

r
e
q
u
ir
e
m
e
n
t
s

s
o
f
t
w
a
r
e

30%

5%

r
e
q
u
ir
e
m
e
n
t
s

s
o
f
t
w
a
r
e

50%

8%

90% 90%

20%

10%

requirements workshops

Imagine this will

ultimately be a 20-

iteration project.

In evolutionary iterative

development, the

requirements evolve

over a set of the early

iterations, through a

series of requirements

workshops (for

example). Perhaps

after four iterations and

workshops, 90% of the

requirements are

defined and refined.

Nevertheless, only

10% of the software is

built.

1 2 3 4 5 ... 20

week 1

M T W Th F

week 2

M T W Th F

week 3

M T W Th F

kickoff meeting

clarifying iteration

goals with the team.

1 hour

team agile

modeling &

design,

UML

whiteboard

sketching.

5 hours

start

coding &

testing

a 3-week iteration

de-scope

iteration

goals if

too much

work

final check-in

and code-

freeze for the

iteration

baseline

demo and

2-day

requirements

workshop

next

iteration

planning

meeting;

2 hours

Most OOA/D and

applying UML during

this period

Use-case modeling

during the workshop

UML and Patterns.book Page 28 Thursday, September 16, 2004 9:48 PM

29

WHAT ARE AGILE METHODS AND ATTITUDES?

TDD p. 385

Example practices from the Scrum agile method include a common project work-
room and self-organizing teams that coordinate through a daily stand-up meet-
ing with four special questions each member answers. Example practices from
the Extreme Programming (XP) method include programming in pairs and test-
driven development.

Any iterative method, including the UP, can be applied in an agile spirit. And
the UP itself is flexible, encouraging a “whatever works” attitude to include
practices from Scrum, XP, and other methods.

The Agile Manifesto and Principles

The Agile Manifesto

The Agile Principles

In 2001 a group interested in iterative and agile methods (coining the term) met
to find common ground. Out of this came the Agile Alliance (www.agilealli-
ance.com) with a manifesto and statement of principles to capture the spirit of
agile methods.

Individuals and interactions over processes and tools

Working software over comprehensive documentation

Customer collaboration over contract negotiation

Responding to change over following a plan

1. Our highest priority is to satisfy the customer
through early and continuous delivery of valu-
able software.

8. Agile processes promote sustainable devel-
opment.

2. Welcome changing requirements, even late in
development. Agile processes harness change
for the customer’s competitive advantage.

9. The sponsors, developers, and users should
be able to maintain a constant pace
indefinitely.

3. Deliver working software frequently, from a
couple of weeks to a couple of months, with a
preference to the shorter time scale.

10. Continuous attention to technical excel-
lence and good design enhances agility.

4. Business people and developers must work
together daily throughout the project.

11. Simplicity—the art of maximizing the
amount of work not done—is essential.

5. Build projects around motivated individuals.
Give them the environment and support they
need, and trust them to get the job done.

12. The best architectures, requirements, and
designs emerge from self-organizing teams.

6. The most efficient and effective method of
conveying information to and within a develop-
ment team is face-to-face conversation.

13. At regular intervals, the team reflects on
how to become more effective, then tunes and
adjusts its behavior accordingly.

7. Working software is the primary measure of
progress.

UML and Patterns.book Page 29 Thursday, September 16, 2004 9:48 PM

2 – ITERATIVE, EVOLUTIONARY, AND AGILE

30

2.7 What is Agile Modeling?

more on agile mod-
eling p. 214

Experienced analysts and modelers know the secret of modeling:

The purpose of modeling (sketching UML, …) is primarily to
understand, not to document.

That is, the very act of modeling can and should provide a way to better under-
stand the problem or solution space. From this viewpoint, the purpose of “doing
UML” (which should really mean “doing OOA/D”) is not for a designer to create
many detailed UML diagrams that are handed off to a programmer (which is a
very un-agile and waterfall-oriented mindset), but rather to quickly explore
(more quickly than with code) alternatives and the path to a good OO design.

This view, consistent with agile methods, has been called agile modeling in the
book (amazingly called) Agile Modeling [Ambler02]. It implies a number of prac-
tices and values, including:

" Adopting an agile method does not mean avoiding any modeling; that’s a
misunderstanding. Many agile methods, such as Feature-Driven Develop-
ment, DSDM, and Scrum, normally include significant modeling sessions.
Even the XP founders, from perhaps the most well-known agile method with
the least emphasis on modeling, endorsed agile modeling as described by
Ambler—and practiced by many modelers over the years.

" The purpose of modeling and models is primarily to support understanding
and communication, not documentation.

" Don’t model or apply the UML to all or most of the software design. Defer
simple or straightforward design problems until programming—solve them
while programming and testing. Model and apply the UML for the smaller
percentage of unusual, difficult, tricky parts of the design space.

" Use the simplest tool possible. Prefer “low energy” creativity-enhancing sim-
ple tools that support rapid input and change. Also, choose tools that sup-
port large visual spaces. For example, prefer sketching UML on
whiteboards, and capturing the diagrams with a digital camera.2

This doesn’t mean UML CASE tools or word processors can’t be
used or have no value, but especially for the creative work of dis-
covery, sketching on whiteboards supports quick creative flow and
change. The key rule is ease and agility, whatever the technology.

2. Two whiteboard sketching tips: One: If you don’t have enough whiteboards (and you
should have many large ones), an alternative is “whiteboard” plastic cling sheets
which cling to walls (with a static charge) to create whiteboards. The main product in
North America is Avery Write-On Cling Sheets; the main product in Europe is LegaM-
aster Magic-Chart. Two: Digital photos of whiteboard images are often poor (due to
reflection). Don’t use a flash, but use a software “whiteboard image clean up” applica-
tion to improve the images, if you need to clean them (as I did for this book).

UML and Patterns.book Page 30 Thursday, September 16, 2004 9:48 PM

31

WHAT IS AN AGILE UP?

" Don’t model alone, model in pairs (or triads) at the whiteboard, in the
awareness that the purpose of modeling is to discover, understand, and
share that understanding. Rotate the pen sketching across the members so
that all participate.

" Create models in parallel. For example, on one whiteboard start sketching a
dynamic-view UML interaction diagram, and on another whiteboard, start
sketching the complementary static-view UML class diagram. Develop the
two models (two views) together, switching back and forth.

" Use “good enough” simple notation while sketching with a pen on white-
boards. Exact UML details aren’t important, as long as the modelers under-
stand each other. Stick to simple, frequently used UML elements.

" Know that all models will be inaccurate, and the final code or design differ-
ent—sometimes dramatically different—than the model. Only tested code
demonstrates the true design; all prior diagrams are incomplete hints, best
treated lightly as throw-away explorations.

" Developers themselves should do the OO design modeling, for themselves,
not to create diagrams that are given to other programmers to implement—
an example of un-agile waterfall-oriented practices.

Agile Modeling in this Book: Why the Snapshots of UML Sketches?

UML-sketch modeling on whiteboards is a practice I—and many developers—
have enthusiastically coached and practiced for years. Yet most of the UML dia-
grams in this book give the impression I don’t work that way, because they’ve
been drawn neatly with a tool, for readability. To balance that impression the
book occasionally includes digital snapshot pictures of whiteboard UML
sketches. It sacrifices legibility but reminds that agile modeling is useful and is
the actual practice behind the case studies.

For example, Figure 2.5 is an unedited UML sketch created on a project I was
coaching. It took about 20 minutes to draw, with four developers standing
around. We needed to understand the inter-system collaboration. The act of
drawing it together provided a context to contribute unique insights and reach
shared understanding. This captures the feel of how agile modelers apply the
UML.

2.8 What is an Agile UP?

The UP was not meant by its creators to be heavy or un-agile, although its large
optional set of activities and artifacts have understandably led some to that
impression. Rather, it was meant to be adopted and applied in the spirit of
adaptability and lightness—an agile UP. Some examples of how this applies:

UML and Patterns.book Page 31 Thursday, September 16, 2004 9:48 PM

Figure 2.5 A UML sketch of a sequence diagram from a project.

customizing UP
p. 37

" Prefer a small set of UP activities and artifacts. Some projects will benefit
more than others, but, in general, keep it simple. Remember that all UP
artifacts are optional, and avoid creating them unless they add value. Focus
on early programming, not early documenting.

evolutionary A&D
p. 25

" Since the UP is iterative and evolutionary, requirements and designs are not
completed before implementation. They adaptively emerge through a series
of iterations, based on feedback.

agile models p. 30 " Apply the UML with agile modeling practices.

agile PM p. 673 " There isn’t a detailed plan for the entire project. There is a high-level plan
(called the Phase Plan) that estimates the project end date and other major
milestones, but it does not detail the fine-grained steps to those milestones.
A detailed plan (called the Iteration Plan) only plans with greater detail
one iteration in advance. Detailed planning is done adaptively from itera-
tion to iteration.

UML and Patterns.book Page 32 Thursday, September 16, 2004 9:48 PM

33

ARE THERE OTHER CRITICAL UP PRACTICES?

The case studies emphasize a relatively small number of artifacts, and iterative
development, in the spirit of an agile UP.

2.9 Are There Other Critical UP Practices?

The central idea to appreciate and practice in the UP is short timeboxed itera-
tive, evolutionary, and adaptive development. Some additional best practices
and key concepts in the UP:

" tackle high-risk and high-value issues in early iterations

" continuously engage users for evaluation, feedback, and requirements

" build a cohesive, core architecture in early iterations

" continuously verify quality; test early, often, and realistically

" apply use cases where appropriate

" do some visual modeling (with the UML)

" carefully manage requirements

" practice change request and configuration management

2.10 What are the UP Phases?

A UP project organizes the work and iterations across four major phases:

1. Inception—approximate vision, business case, scope, vague estimates.

2. Elaboration—refined vision, iterative implementation of the core architec-
ture, resolution of high risks, identification of most requirements and scope,
more realistic estimates.

3. Construction—iterative implementation of the remaining lower risk and
easier elements, and preparation for deployment.

4. Transition—beta tests, deployment.

These phases are more fully defined in subsequent chapters.

This is not the old “waterfall” or sequential lifecycle of first defining all the
requirements, and then doing all or most of the design.

Inception is not a requirements phase; rather, it is a feasibility phase, where
just enough investigation is done to support a decision to continue or stop.

Similarly, elaboration is not the requirements or design phase; rather, it is a
phase where the core architecture is iteratively implemented, and high-risk
issues are mitigated.

Figure 2.6 illustrates common schedule-oriented terms in the UP. Notice that

UML and Patterns.book Page 33 Thursday, September 16, 2004 9:48 PM

2 – ITERATIVE, EVOLUTIONARY, AND AGILE

34

one development cycle (which ends in the release of a system into production) is
composed of many iterations.

Figure 2.6 Schedule-oriented terms in the UP.

2.11 What are the UP Disciplines?

The UP describes work activities, such as writing a use case, within disci-
plines—a set of activities (and related artifacts) in one subject area, such as the
activities within requirements analysis. In the UP, an artifact is the general
term for any work product: code, Web graphics, database schema, text docu-
ments, diagrams, models, and so on.

There are several disciplines in the UP; this book focuses on some artifacts in
the following three:

" Business Modeling—The Domain Model artifact, to visualize noteworthy
concepts in the application domain.

" Requirements—The Use-Case Model and Supplementary Specification
artifacts to capture functional and non-functional requirements.

" Design—The Design Model artifact, to design the software objects.

A longer list of UP disciplines is shown in Figure 2.7.

In the UP, Implementation means programming and building the system, not
deploying it. The Environment discipline refers to establishing the tools and
customizing the process for the project—that is, setting up the tool and process
environment.

inc. elaboration construction transition

iteration phase

development cycle

release

A stable executable
subset of the final
product. The end of
each iteration is a
minor release.

increment

The difference
(delta) between the
releases of 2
subsequent
iterations.

final production
release

At this point, the
system is released
for production use.

milestone

An iteration end-
point when some
significant decision
or evaluation occurs.

UML and Patterns.book Page 34 Thursday, September 16, 2004 9:48 PM

35

WHAT ARE THE UP DISCIPLINES?

Figure 2.7 UP disciplines.

What is the Relationship Between the Disciplines and Phases?

As illustrated in Figure 2.7, during one iteration work goes on in most or all dis-
ciplines. However, the relative effort across these disciplines changes over time.
Early iterations naturally tend to apply greater relative emphasis to require-
ments and design, and later ones less so, as the requirements and core design
stabilize through a process of feedback and adaptation.

Relating this to the UP phases (inception, elaboration, …), Figure 2.8 illustrates
the changing relative effort with respect to the phases; please note these are
suggestive, not literal. In elaboration, for example, the iterations tend to have a
relatively high level of requirements and design work, although definitely some
implementation as well. During construction, the emphasis is heavier on imple-
mentation and lighter on requirements analysis.

Iterations

Sample
UP Disciplines

Business Modeling

Requirements

Design

Implementation

Test

Deployment

Configuration & Change
Management

Project Management

Environment

Focus
of this
book

Note that
although an
iteration includes
work in most
disciplines, the
relative effort and
emphasis change
over time.

This example is
suggestive, not
literal.

A four-week iteration (for example).
A mini-project that includes work in most
disciplines, ending in a stable executable.

UML and Patterns.book Page 35 Thursday, September 16, 2004 9:48 PM

2 – ITERATIVE, EVOLUTIONARY, AND AGILE

36

Figure 2.8 Disciplines and phases.

How is the Book Structure Influenced by UP Phases and Disciplines?

With respect to the phases and disciplines, what is the focus of the case studies?

The earlier chapters introduce activities in inception; later chapters explore sev-
eral iterations in elaboration. The following list and Figure 2.9 describe the
organization with respect to the UP phases.

1. The inception phase chapters introduce the basics of requirements analysis.

2. Iteration 1 introduces fundamental OOA/D and assignment of responsibili-
ties to objects.

3. Iteration 2 focuses on object design, especially on introducing some high-use
“design patterns.”

4. Iteration 3 introduces a variety of subjects, such as architectural analysis
and framework design.

Sample
UP Disciplines

Business Modeling

Requirements

Design

Implementation

...

The relative effort in
disciplines shifts
across the phases.

This example is
suggestive, not literal.

incep-
tion elaboration construction transi-

tion

...

The case studies emphasize the inception and elaboration phase. They focus
on some artifacts in the Business Modeling, Requirements, and Design disci-
plines, as this is where requirements analysis, OOA/D, patterns, and the
UML are primarily applied.

UML and Patterns.book Page 36 Thursday, September 16, 2004 9:48 PM

37

HOW TO CUSTOMIZE THE PROCESS? THE UP DEVELOPMENT CASE

Figure 2.9 Book organization is related to the UP phases and iterations.

2.12 How to Customize the Process? The UP Development Case

Are There Optional Artifacts or Practices in the UP?

Yes! Almost everything is optional. That said, some UP practices and principles
are invariant, such as iterative and risk-driven development, and continuous
verification of quality.

However, a key insight into the UP is that all activities and artifacts (models,
diagrams, documents, …) are optional—well, maybe not the code!

Definition: What is the Development Case?

The choice of practices and UP artifacts for a project may be written up in a
short document called the Development Case (an artifact in the Environment
discipline). For example, Table 2.1 could be the Development Case for the “Next-
Gen Project” case study explored in this book.

Subsequent chapters describe the creation of some of these artifacts, including
the Domain Model, Use-Case Model, and Design Model.

Overview Inception Elaboration
Iteration 1

Elaboration
Iteration 2

Elaboration
Iteration 3

Object-Oriented
Analysis

Object-Oriented
Design

Translating
Designs to Code

The Book

Topics such as OO analysis and OO
design are incrementally introduced in
iteration 1, 2, and 3.

Special
Topics

Analogy

The set of possible artifacts described in the UP should be viewed like a set
of medicines in a pharmacy. Just as one does not indiscriminately take many
medicines, but matches the choice to the ailment, likewise on a UP project, a
team should select a small subset of artifacts that address its particular
problems and needs. In general, focus on a small set of artifacts that demon-
strate high practical value.

UML and Patterns.book Page 37 Thursday, September 16, 2004 9:48 PM

2 – ITERATIVE, EVOLUTIONARY, AND AGILE

38

The example practices and artifacts presented in this case study are by no
means sufficient for, or suitable for, all projects. For example, a machine control
system may benefit from many state diagrams. A Web-based e-commerce sys-
tem may require a focus on user interface prototypes. A “green-field” new devel-
opment project has very different design artifact needs than a systems
integration project.

Table 2.1 Sample Development Case. s - start; r - refine

2.13 You Know You Didn’t Understand Iterative Development or the
UP When...

Here are some signs that you have not understood what it means to adopt itera-
tive development and the UP in a healthy agile spirit.

" You try to define most of the requirements before starting design or imple-
mentation. Similarly, you try to define most of the design before starting
implementation; you try to fully define and commit to an architecture before
iterative programming and testing.

" You spend days or weeks in UML modeling before programming, or you
think UML diagramming and design activities are a time to fully and accu-

Discipline Practice Artifact Incep. Elab. Const. Trans.
Iteration$ I1 E1..En C1..Cn T1..T2

Business
Modeling

agile modeling
req. workshop

Domain Model s

Requirements req. workshop Use-Case Model s r
vision box exercise Vision s r
dot voting Supplementary

Specification
s r

Glossary s r
Design agile modeling Design Model s r

test-driven dev. SW Architecture
Document

s

Data Model s r
Implementa-
tion

test-driven dev.
pair programming
continuous integration
coding standards

…

Project
Management

agile PM
daily Scrum meeting

…

…

UML and Patterns.book Page 38 Thursday, September 16, 2004 9:48 PM

39

HISTORY

rately define designs and models in great detail. And you regard program-
ming as a simple mechanical translation of these into code.

" You think that inception = requirements, elaboration = design, and con-
struction = implementation (that is, superimposing the waterfall on the UP).

" You think that the purpose of elaboration is to fully and carefully define
models, which are translated into code during construction.

" You believe that a suitable iteration length is three months long, rather
than three weeks long.

" You think that adopting the UP means to do many of the possible activities
and create many documents, and you think of or experience the UP as a for-
mal, fussy process with many steps to be followed.

" You try to plan a project in detail from start to finish; you try to specula-
tively predict all the iterations, and what should happen in each one.

2.14 History

For the full story and citations, see “Iterative and Incremental Development: A
Brief History” (IEEE Computer, June 2003, Larman and Basili), and also
[Larman03]. Iterative methods go back farther than many realize. In the late
1950s, evolutionary, iterative, and incremental development (IID), rather than
the waterfall, was applied on the Mercury space project, and in the early 1960s,
on the Trident submarine project, in addition to many other large systems. The
first published paper promoting iterative rather than waterfall development
was published in 1968 at the IBM T.J. Watson Research Center.

IID was used on many large defense and aerospace projects in the 1970s, includ-
ing the USA Space Shuttle flight control software (built in 17 iterations averag-
ing about four weeks each). A dominant software engineering thought-leader of
the 1970s, Harlan Mills, wrote at that time about the failure of the waterfall for
software projects, and the need for IID. Tom Gilb, a private consultant, created
and published the IID Evo method in the 1970s, arguably the first fully-formed
iterative method. The USA Department of Defense had adopted a waterfall
standard in the late 1970s and early 1980s (DoD-2167); by the late 1980s they
were experiencing significant failure (estimates of at least 50% of software
projects cancelled or unusable), and so it was dropped, and eventually (starting
in 1987) replaced by IID method standards—although the legacy of waterfall
influence still confuses some DoD projects.

Also in the 1980s, Dr. Frederick Brooks (of Mythical Man-Month fame), a major
software engineering thoughtleader of that decade, wrote and spoke about the
shortcomings of the waterfall and the need to instead use IID methods. Another
1980s milestone was the publication of the spiral model risk-driven IID method
by Dr. Barry Boehm, citing the high risk of failure when the waterfall was
applied.

UML and Patterns.book Page 39 Thursday, September 16, 2004 9:48 PM

2 – ITERATIVE, EVOLUTIONARY, AND AGILE

40

By the early 1990s, IID was widely recognized as the successor to the waterfall,
and there was a flowering of iterative and evolutionary methods: UP, DSDM,
Scrum, XP, and many more.

2.15 Recommended Resources

A readable introduction to the UP and its refinement in the RUP is The Ratio-
nal Unified Process—An Introduction by Philippe Kruchten. Also excellent is
The Rational Unified Process Made Easy, by Kruchten and Kroll.

Agile and Iterative Development: A Manager’s Guide [Larman03] discusses iter-
ative and agile practices, four iterative methods (XP, UP, Scrum, and Evo), the
evidence and history behind them, and the evidence of failure for the waterfall.

For other iterative and agile methods, the Extreme Programming (XP) series
of books [Beck00, BF00, JAH00] are recommended, such as Extreme Program-
ming Explained. Some XP practices are encouraged in later chapters of this
book. Most XP practices (such as test-driven programming, continuous integra-
tion, and iterative development) are compatible with—or identical to—UP prac-
tices, and I encourage their adoption on a UP project.

The Scrum method is another popular iterative approach that applies 30-day
timeboxed iterations, with a daily stand-up meeting with three special questions
answered by each team member. Agile Software Development with Scrum is rec-
ommended reading.

Agile Modeling is described in Agile Modeling, by Scott Ambler.

IBM sells the online Web-based RUP documentation product, which provides
comprehensive reading on RUP artifacts and activities, and templates for most
artifacts. An organization can run a UP project just using mentors and books as
learning resources, but some find the RUP product a useful learning and process
aid.

For Web resources:

" www.agilealliance.com—Collects many articles specifically related to
iterative and agile methods, plus links.

" www.agilemodeling.com—Articles on agile modeling.

" www.cetus-links.org—The Cetus Links site has specialized for years in
object technology (OT). Under “OO Project Management—OOA/D Methods”
it has many links to iterative and agile methods, even though they are not
directly related to OT.

" www.bradapp.net—Brad Appleton maintains a large collection of links on
software engineering, including iterative methods.

" www.iturls.com—The Chinese front page links to an English version, with
a search engine referencing iterative and agile articles.

UML and Patterns.book Page 40 Thursday, September 16, 2004 9:48 PM

41

Chapter

3
 3 CASE STUDIES

Few things are harder to put up with than a good example.

—Mark Twain

Introduction

These case study problems (starting on p. 43) were chosen because they’re famil-
iar to many people, yet rich with complexity and interesting design problems.
That allows us to concentrate on learning fundamental OOA/D, requirements
analysis, UML and patterns, rather than explaining the problems.

3.1 What is and isn’t Covered in the Case Studies?

Generally, applications include UI elements, core application logic, database
access, and collaboration with external software or hardware components.

OOA/D

Introduction

What’s Next?

Iterative,

Evolutionary

and Agile

Having introduced iterative development, this chapter summarizes the case

studies and our focus on the application logic layer. The next chapter

introduces the inception phase of the case studies, emphasizing that

inception is not the waterfall phase of “full” early requirements analysis.

Inception
Case

Studies

Evolutionary

Requirements

Although OO technology can be applied at all levels,
this introduction to OOA/D focuses on the core application

logic layer, with some secondary discussion of the other layers.

UML and Patterns.book Page 41 Thursday, September 16, 2004 9:48 PM

